Question	Answer	Marks	AO Element	Notes	Guidance
1(a)(i)	M2 for $\frac{(8-2) \times 180}{8 \times 2}$ oe	2		M1 for $\frac{(8-2) \times 180}{8}$ or $\frac{360}{8}$ or $\frac{(2 \times 8 - 4) \times 90}{8}$	

Question	Answer	Marks	AO Element	Notes	Guidance
1(a)(ii)	174 or 173.8	4		M3 for $\frac{1}{2} \times 6 \times OM$ oe or $\frac{1}{2} \times (OA)^2 \times \sin 45$ oe or $\frac{1}{2} \times 6 \times OA \times \sin 67.5$ oe where OA and OM are as in the M2 or M2 for $OM = 3 \times \tan 67.5$ oe or for $OA = \left(\frac{3}{\cos 67.5}\right)$ or $\frac{6 \times \sin 67.5}{\sin 45}$ oe or M1 for $\frac{OM}{3} = \tan 67.5$ oe or for $\frac{3}{OA} = \cos 67.5$ oe or for $\frac{3}{OA} = \cos 67.5$	
				O OA	

Question	Answer	Marks	AO Element	Notes	Guidance
1(b)	193 or 193.0 to 193.1	3		M2 for $\pi \times \left(\frac{3}{\cos 67.5}\right)^2 \text{ oe}$ or M1 for $\frac{3}{r} = \cos 67.5 \text{ or}$ $\frac{\sin 45}{6} = \frac{\sin 67.5}{r}$	
2(a)	87.[0] or 86.98 to 86.99	3		M2 for $\sqrt{82^2 + 55^2 - 2 \times 82 \times 55}$ oe OR M1 for $82^2 + 55^2 - 2 \times 82 \times 55 \times 6$ OR A1 for 7570 or 7566 to 7567	
2(b)	66.1 or 66.2 or 66.13 to 66.17	3		M2 for $\frac{82 \times \sin 76}{their(\mathbf{a})}$ oe or M1 for $\frac{82}{\sin C} = \frac{their(\mathbf{a})}{\sin 76}$ oe	

Question	Answer	Marks	AO Element	Notes	Guidance
2(c)	13.3 or 13.30 to 13.31	3		M2 for $AG = 55 \cos 76$ oe or M1 for recognition that CG is perpendicular to AB	
2(d)	54.1 or 54.13 and 125.9 or 125.86 to 125.87	5		B4 for 54.1 or 54.13 or 125.9 or 125.86 to 125.87 or M3 for $[\sin Q =] \frac{0.5 \times 82 \times 55 \times 20.5 \times 90 \times 100}{0.5 \times 90 \times 100}$ or M2 for $0.5 \times 82 \times 55 \times 100$ or M1 for $0.5 \times 82 \times 55 \times 100$ or for $0.5 \times 80 \times 100$ or for $0.5 \times 80 \times 100$ or for $0.5 \times 80 \times 100$ or for 0.5×100 or). 5 × 60 × 90 × sin <i>Q</i>

Question	Answer	Marks	AO Element	Notes	Guidance
3	77.8 or 77.77 to 77.80	5		B4 for answer 22.2[%] or 22.20[%] to 22.23[%]	
				OR	
				M1 for $\tan^{-1}\left(\frac{11}{4}\right)$ oe or $\tan^{-1}\left(\frac{4}{11}\right)$ oe	
				or $\tan^{-1}\left(\frac{4}{11}\right)$ oe	
				M2 for	
				$4 \times 11 - \frac{their\ acute\ angle}{360}$	$\frac{?}{} \times \pi \times 4^2$
				oe	
				or M1 for $\frac{their\ acute\ angle}{360} \times \pi \times 4$	2
				oe	
				M1 for	
				$\frac{\text{their shaded area}}{4 \times 11} \left[\times 100 \right]$	
				oe	
				or $\frac{their\ sector\ area}{4\times11}\times100$	
				4 ^ 11	
				oe	

Question	Answer	Marks	AO Element	Notes	Guidance
4(a)	41.2 or 41.21 to 41.23	4		M1 for $SQ = 2 \times 32 \times \sin\left(\frac{1}{2} \times 50\right)$ oe or $\sqrt{32^2 + 32^2 - 2 \times 32 \times 32}$ oe or $\frac{32 \sin 56}{\sin((180 - 56) \div 2)}$ oe M2 for $SR^2 = 47^2 + (theirSQ)^2$ or M1 for implicit form	
4(b)	28.3 or 28.25 to 28.29	3		M2 for $32 \times \sin 62$ oe or M1 for recognition that line from P is perpendicular to SQ	
5	14.1 or 14.12	3		M2 for $\sin 65 = \frac{12.8}{BC}$ oe or better or M1 for recognition that the line from <i>B</i> is perpendicular to <i>AC</i>	

Question	Answer	Marks	AO Element	Notes	Guidance
6	456 or 456.4	4		M2 for $\frac{18.2}{\tan 62}$ oe or M1 for $\tan 62 = \frac{18.2}{x}$ oe M1 for $\frac{1}{2}$ ((their trapezium base)) + 15.4) × 18.2

Question Answer Marks AO Element Notes Guidance	idance
7 16.6 or 16.64 5 $\frac{\mathbf{M2} \text{ for}}{21 \times \frac{18}{13.5} = [AC] \text{ oe}}$ or $\mathbf{M1}$ for scale factor $\frac{13.5}{18}$ or $\frac{18}{13.5}$ oe soi Then Pythagoras method: and $\mathbf{M2}$ for $\sqrt{28^2 + 18^2}$ [$\div 2$] or $\sqrt{(their\ AC)^2 + 18^2}$ [$\div 2$] or $AD^2 = 28^2 + 18^2$ or $AD^2 = (their\ AC)^2 + 18^2$ OR alternative trigonometry method e.g. $\mathbf{M1}$ for tan $E = \frac{21}{13.5}$ and $\mathbf{M1}$ for tan $E = \frac{18}{\cos\ their\ 57.3}$	Idance

Question	Answer	Marks	AO Element	Notes	Guidance
8(a)	M1 for $[BC^2 =] 80^2 + 115^2 - 2 \times 80 \times 115$ oe A2 for 118.06	3 cos 72		A1 for 13939	
8(b)	67.8 or 67.9 or 67.83 to 67.88	3		M2 for $[\sin B =] \frac{115 \times \sin 72}{118.1}$ oe or M1 for $\frac{115}{\sin B} = \frac{118.1}{\sin 72}$ oe	
8(c)(i)	255	3		B1 for bearing of <i>B</i> from <i>A</i> is 75 soi M1 for 180 + 75 oe	
8(c)(ii)	[00]7.2	2		M1 for <i>their</i> (c)(i) – <i>their</i> (b) –180	
8(d)	11.8 or 11.82 to 11.83	3		M1 for $115 \div 35$ oe M1 for their speed in m/s $\times 60 \times 60 \div 1000$	

Question	Answer	Marks	AO Element	Notes	Guidance
8(e)	76.1 or 76.08 to 76.09	3		$\mathbf{M2} \text{ for } \frac{\text{distance}}{80} = \sin 72$ oe or M1 for distance required is perpendicular to AC soi	
9(a)	M2 for $(4x-5)(x+3) + (x+1)(x-3) = $ or $2x(4x-5) - (3x-6)(x-3) = 34$			M1 for $(4x - 5) (x + 3)$ or $(x + 1) (x - 3)$ or for $2x (4x - 5)$ or $(3x - 6) (x - 3)$	
	M2 for $4x^2 + 12x - 5x - 15$ oe and $x^2 + x - 3x - 3$ oe seen OR $8x^2 - 10x$ and $3x^2 - 15x + 18$ seen			M1 for each no errors or omission	
	A1 for $5x^2 + 5x - 18 = 342$ leading to $x^2 + x - 72 = 0$				
9(b)	M2 for $(x + 9) (x - 8)$	3		B1 for $(x - a)(x + b)$ where $ab = -72$ or $a + b = 1$ and a, b are	
	B1 for 8, –9			integers	

Question	Answer	Marks	AO Element	Notes	Guidance
9(c)	86	2		FT for $12 \times their x - 10$ (x positive)	
				B1 for any one of 27, 11, 16 seen or for 2x + 2x + 4x - 5 + 4x - 5 oe or better soi	
9(d)	22.2 or 22.16 to 22.17	2		M1 for tan = $\frac{11}{27}$ or $\frac{their \ x + 3}{4 \times their \ x - 5}$	
10(a)	[0]38 or [0]37.9 or [0]37.87	2		M1 for tan = $\frac{350}{450}$ oe If 0 scored, SC1 for answer [0]52 or [0]52.1 or [0]52.12 to [0]52.13	

Question	Answer	Marks	AO Element	Notes	Guidance
10(b)	624 or 623.8 to 623.9	6		M2 for 450 – 400 sin 50	
				or M1 for sin $50 = \frac{\dots}{400}$	
				M2 for $350 + 400 \cos 50$	
				or M1 for cos $50 = \frac{\dots}{400}$	
				M1 for (their (450 - 400 sin 50)) ²	+(their (350+400 cos 50))
10(c)	10 min 8 s	4		B3 for 10.1 or 10.13	
				or	
				M2 for (400 + 350 + 450 + their DA) ÷ 3 [÷ 60] oe	
				or M1 for any distance ÷ 3	
				M1 for rounding <i>their</i> minutes into minutes and seconds to nearest second if clearly seen	

Question	Answer	Marks	AO Element	Notes	Guidance
11(a)	B2 for $\angle ACD = 46$ soi	5		B1 for angle $ADC = 108$ or angle $DCB = 18$	
	$\mathbf{M2} \text{ for } \frac{58 \sin 108}{\sin \ their 46}$			$\frac{\mathbf{M1} \text{ for}}{\frac{\sin 108}{x}} = \frac{\sin \text{ their} 46}{58}$	
	A1 for 76.68 nfww				
11(b)	10.9 or 10.91 to 10.94	3		B2 for [$AB = $] 68.9 or 68.91 to 68.94 or M2 for a correct explicit statement for AB or BD or M1 for $\frac{AB}{76.7} = \cos 26 \text{ oe}$	

[Total: 96]