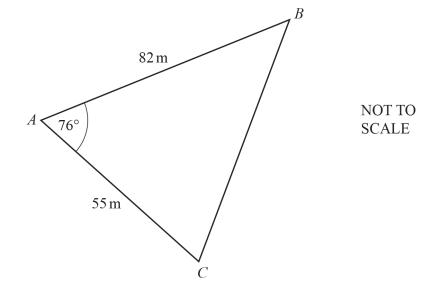

1 ABCDEFGH is a regular octagon with sides of length 6 cm. The diagram shows part of the octagon.

O is the centre of the octagon and M is the midpoint of AB. $A \qquad M \qquad B$

(a) (i) Show that angle OAM is 67.5° .

(ii) Calculate the area of the octagon.

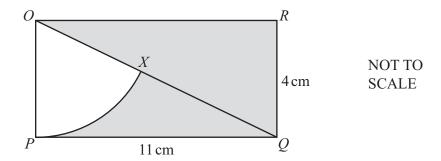

cm ² [4	cm ² [4]
--------------------	---------------------

(b) Find the area of the circle that passes through the vertices of the octagon.

..... cm² [3]

[Total: 9]

[2]

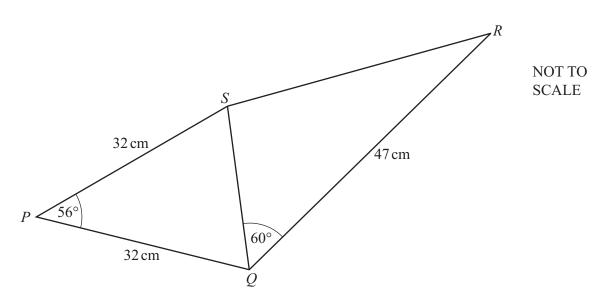

The diagram shows a field ABC.

(a) Calculate BC.

$$BC = m$$
 [3]

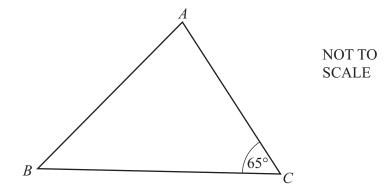
(b) Calculate angle *ACB*.

(c)	A gate, G , lies on AB at the shortest distance from C .		
	Calculate AG.		
		<i>AG</i> = m	[2]
		AG = m	[3]
(d)	A different triangular field PQR has the same area as $APQ = 90 \text{ m}$ and $QR = 60 \text{ m}$.	BC.	
	Work out the two possible values of angle <i>PQR</i> .		
	Angle $PQR = \dots$	or	[5]
		[Total:	14]


The diagram shows a rectangle OPQR with length 11 cm and width 4 cm. OQ is a diagonal and OPX is a sector of a circle, centre O.

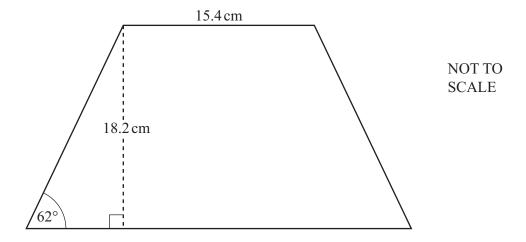
Calculate the percentage of the rectangle that is shaded.

..... % [5]


[Total: 5]

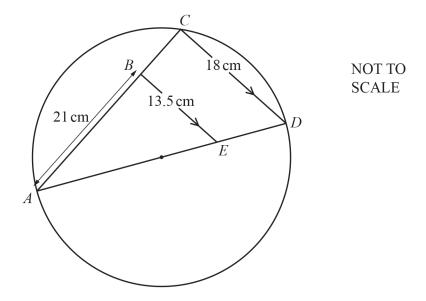
4

The diagram shows a quadrilateral PQRS formed from two triangles, PQS and QRS. Triangle PQS is isosceles, with PQ = PS = 32 cm and angle $SPQ = 56^{\circ}$. QR = 47 cm and angle $SQR = 60^{\circ}$.


(a)	Calculate SR.		
		<i>SR</i> = cm	[4]
(b)	Calculate the shortest distance from P to SQ .		
		cm	[3]
		[Tot	al: 7]

The shortest distance from B to AC is 12.8 cm.

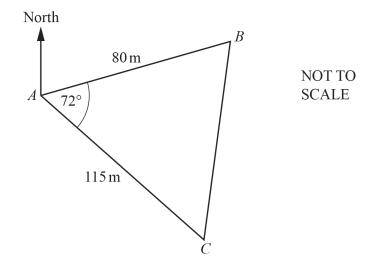
Calculate BC.


$$BC =$$
 cm [3] [Total: 3]

The diagram shows a trapezium. The trapezium has one line of symmetry.

Work out the area of the trapezium.

 cm ²	[4]
[Tota	1: 4]



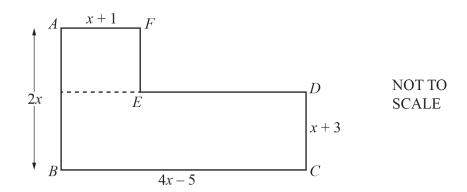
C lies on a circle with diameter AD. B lies on AC and E lies on AD such that BE is parallel to CD. AB = 21 cm, CD = 18 cm and BE = 13.5 cm.

Work out the radius of the circle.

 cm	[5]

[Total: 5]

The diagram shows the positions of three points A, B and C in a field.


(a) Show that BC is 118.1 m, correct to 1 decimal place.

[3]

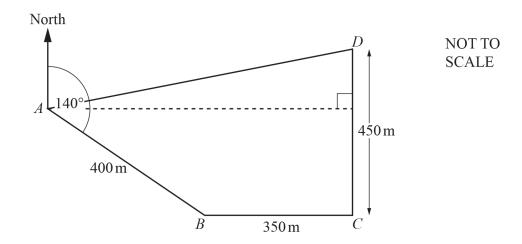
(b) Calculate angle *ABC*.

(c)	The bearing of C from A is 147° .		
	Find the bearing of		
	(i) $A \text{ from } B$,		
			[3]
	(ii) B from C .		
			[2]
(d)	Mitchell takes 35 seconds to run from <i>A</i> to <i>C</i> .		
	Calculate his average running speed in kilometres per hour.		
		km/h	[3]
(e)	Calculate the shortest distance from point B to AC .		
		m	[3]
		[Total	: 17]

9 All the lengths in this question are in centimetres.

The diagram shows a shape ABCDEF made from two rectangles. The total area of the shape is $342 \,\mathrm{cm}^2$.

(a) Show that $x^2 + x - 72 = 0$.

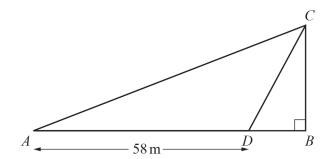

[5]

(b) Solve by factorisation. $x^2 + x - 72 = 0$

$$x^2 + x - 72 = 0$$

$$x = \dots$$
 or $x = \dots$ [3]

(c)	Work out the perimeter of the shape <i>ABCDEF</i> .		
		cm [[2]
(d)) Calculate angle <i>DBC</i> .		
	Ang	e <i>DBC</i> =	[2]
		[Total: 1	2]



The diagram shows a field ABCD. The bearing of B from A is 140° . C is due east of B and D is due north of C. AB = 400 m, BC = 350 m and CD = 450 m.

(a) Find the bearing of D from B.

$\Gamma \cap \Gamma$
 LZ

(b)	Calculate the distance from D to A .
	m [6]
(c)	Jono runs around the field from <i>A</i> to <i>B</i> , <i>B</i> to <i>C</i> , <i>C</i> to <i>D</i> and <i>D</i> to <i>A</i> . He runs at a speed of 3 m/s.
	Calculate the total time Jono takes to run around the field.
	Give your answer in minutes and seconds, correct to the nearest second.
	min s [4]
	[Total: 12]

NOT TO SCALE

In the diagram, BC is a vertical wall standing on horizontal ground AB.

D is the point on AB where AD = 58 m.

The angle of elevation of C from A is 26° .

The angle of elevation of C from D is 72° .

(a) Show that AC = 76.7 m, correct to 1 decimal place.

[5]

(b) Calculate *BD*.

$$BD =$$
 m [3]

[Total: 8]