Question 1:

Perfect Squares

$$\sqrt{16}$$
 =

$$\sqrt{16} =$$
 $\sqrt{25} =$ $\sqrt{49} =$ $\sqrt{4} =$

$$\sqrt{49} = ____$$

Question 2:

See if you can see a relationship between the numbers in Question 1 and the numbers below.

$$\sqrt{32}$$

$$\sqrt{50}$$

$$\sqrt{98}$$

$$\sqrt{8}$$

$$\sqrt{18}$$

The numbers are all _____

Question 3:

Write the numbers as a product of its factors, trying to keep a square number as a factor. The first one is done for you.

$$\sqrt{32} = \sqrt{16 \times 2}$$

$$\sqrt{32} = \sqrt{16 \times 2} \quad \sqrt{50} = \qquad \sqrt{98} = \qquad \sqrt{8} = \qquad \sqrt{18} =$$

$$\sqrt{18}$$
 =

Question 4:

Separate the radicals.

The first one is done for you.

$$\sqrt{32} = \sqrt{16} \times \sqrt{2} \sqrt{50} = \sqrt{98} = \sqrt{8} = \sqrt{8}$$

$$\sqrt{18}$$
 =

Question 5:

Simplify using your answers in question 4.

The first one is done for you.

$$\sqrt{32} = 4\sqrt{2}$$

Question 6:

Simplify the surds below. Remember to find factors that are square numbers.

Square numbers: 4 9 16 25 36 49 64 81 100

$$\sqrt{160}$$

$$\sqrt{250}$$

$$\sqrt{490}$$

$$\sqrt{40}$$

$$\sqrt{90}$$

Question 7:

Simplify the surds below. Remember to find factors that are square numbers

$$\sqrt{125}$$

$$\sqrt{120}$$

$$\sqrt{180}$$

$$\sqrt{48}$$

 $2\sqrt{50}$

$$5\sqrt{50}$$

$$3\sqrt{45}$$

$$2\sqrt{40}$$

$$10\sqrt{45}$$

Cut out the cards below and match them into pairs of equivalent values.

$\sqrt{80}$	$\sqrt{120}$	$\sqrt{48}$	$4\sqrt{5}$
$\sqrt{60}$	$3\sqrt{72}$	$\sqrt{180}$	$2\sqrt{30}$
$\sqrt{121}$	$6\sqrt{50}$	$3\sqrt{75}$	$2\sqrt{15}$
$\sqrt{90}$	$5\sqrt{50}$	$2\sqrt{50}$	11
$4\sqrt{40}$	$\sqrt{140}$	$8\sqrt{45}$	$18\sqrt{2}$
$\sqrt{250}$	$\sqrt{369}$	$6\sqrt{45}$	$3\sqrt{10}$
$4\sqrt{3}$	$6\sqrt{5}$	$30\sqrt{2}$	$15\sqrt{3}$
$2\sqrt{35}$	$10\sqrt{2}$	$8\sqrt{10}$	$25\sqrt{2}$
$24\sqrt{5}$	$5\sqrt{10}$	$3\sqrt{41}$	$18\sqrt{5}$

Question 8: Simplify the following expressions

$\sqrt{300} + \sqrt{48}$	$\sqrt{18} + \sqrt{200}$	$\sqrt{147}-\sqrt{27}$	$\sqrt{315} - \sqrt{875}$
$\frac{\sqrt{45}}{\sqrt{80}}$	$\frac{\sqrt{128}}{\sqrt{72}}$	$\frac{\sqrt{1500}}{\sqrt{375}}$	$\frac{\sqrt{140}}{\sqrt{560}}$

Answers

$$\sqrt{80} = 4\sqrt{5}$$

$$\sqrt{120} = 2\sqrt{30}$$

$$\sqrt{48} = 4\sqrt{3}$$

$$\sqrt{60} = 2\sqrt{15}$$

$$3\sqrt{72} = 18\sqrt{2}$$

$$\sqrt{180} = 6\sqrt{5}$$

$$\sqrt{121} = 11$$

$$6\sqrt{50} = 30\sqrt{2}$$

$$3\sqrt{75} = 15\sqrt{3}$$

$$\sqrt{90} = 3\sqrt{10}$$

$$5\sqrt{50} = 25\sqrt{2}$$

$$2\sqrt{50} = 10\sqrt{2}$$

$$4\sqrt{40} = 8\sqrt{10}$$

$$\sqrt{140} = 2\sqrt{35}$$

$$8\sqrt{45} = 24\sqrt{5}$$

$$\sqrt{250} = 5\sqrt{10}$$

$$\sqrt{369} = 3\sqrt{41}$$

$$6\sqrt{45} = 18\sqrt{5}$$