$$\mathbf{p} = \begin{pmatrix} 4 \\ 5 \end{pmatrix} \qquad \mathbf{q} = \begin{pmatrix} -2 \\ 7 \end{pmatrix}$$

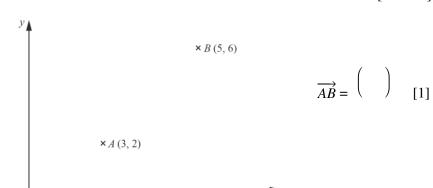
(a) Find 2p + q.

 $\left(\quad \right) \quad _{[2]}$

(b) Find |**p**|.

.....[2]

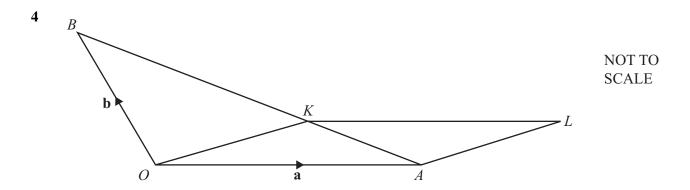
[Total: 4]


2 A is the point (4, 1) and $\overrightarrow{AB} = \begin{pmatrix} -3 \\ 1 \end{pmatrix}$.

Find the coordinates of B.

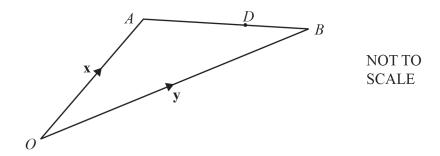
(...... ,) [1]

[Total: 1]

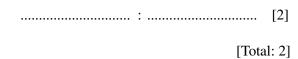

3 (a) Find the column vector \overrightarrow{AB} .

(b) Find $|\overrightarrow{AB}|$.

$$\left| \overrightarrow{AB} \right| = \dots$$
 [2]


(c)	B is the mid-point of the line AC .	
	Find the co-ordinates of <i>C</i> .	
	(,)	[2]
(d)	Find the equation of the straight line that passes through <i>A</i> and <i>B</i> .	
		[3]
(e)	The straight line that passes through A and B cuts the y -axis at D .	
	Write down the co-ordinates of D .	
	(,)	[1]
	[Tota	1: 9]

The diagram shows a triangle OAB and a parallelogram OALK. The position vector of A is \mathbf{a} and the position vector of B is \mathbf{b} . K is a point on AB so that AK : KB = 1 : 2.

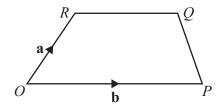

Find the position vector of L, in terms of \mathbf{a} and \mathbf{b} . Give your answer in its simplest form.

	[4]
[Tot	al: 4]

$$\overrightarrow{OA} = \mathbf{x}, \overrightarrow{OB} = \mathbf{y} \text{ and } \overrightarrow{OD} = \frac{3}{7}\mathbf{x} + \frac{4}{7}\mathbf{y}.$$

Calculate the ratio AD:DB.

$$\mathbf{p} = \begin{pmatrix} 2 \\ 8 \end{pmatrix} \qquad \mathbf{q} = \begin{pmatrix} -1 \\ 4 \end{pmatrix}$$


Find $|\mathbf{p} - \mathbf{q}|$.

.....[2]

[Total: 2]

7 A has coordinates (-2, 7), B has coordinates (1, -5) and C has coordinates (5, 4).

(a)	Find the coordinates of the midpoint of the line AB .	
(b)	() Find \overrightarrow{AC} .	[2]
(c)	$\overrightarrow{AC} = \begin{pmatrix} \\ \end{pmatrix}$ Find $ \overrightarrow{AC} $.	[2]
(d)	Find the equation of the line AB . Give your answer in the form $y = mx + c$.	[2]
(e)	$y = \dots$ Find the equation of the line perpendicular to AB that passes through C . Give your answer in the form $y = mx + c$.	[3]

NOT TO SCALE

The diagram shows a trapezium OPQR.

O is the origin, $\overrightarrow{OR} = \mathbf{a}$ and $\overrightarrow{OP} = \mathbf{b}$.

$$\left| \overrightarrow{RQ} \right| = \frac{3}{5} \left| \overrightarrow{OP} \right|$$

(a) Find \overrightarrow{PQ} in terms of **a** and **b** in its simplest form.

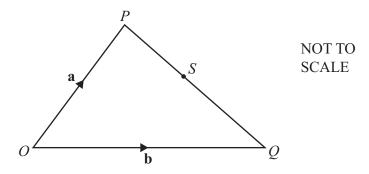
$$\overrightarrow{PQ} =$$
 [2]

(b) When PQ and OR are extended, they intersect at W.

Find the position vector of W.

.....[2]

[Total: 4]

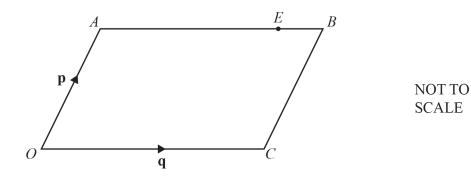

9 The magnitude of the vector $\begin{pmatrix} 20 \\ k \end{pmatrix}$ is 29.

Find the value of k.

$$k = \dots$$
 [3]

[Total: 3]

10


S is a point on PQ such that PS: SQ = 4:5.

Find \overrightarrow{OS} , in terms of **a** and **b**, in its simplest form.

$$\overrightarrow{OS} = \dots$$
 [2]

[Total: 2]

(a)	Calculate the length of AB .	
(b)	Find the equation of the line that is perpendicular to AB and that passes through the point $(-1, 3)$. Give your answer in the form $y = mx + c$.	[3]
(c)	$y = \dots$ $AB \text{ is one side of the parallelogram } ABCD \text{ and}$ $\overrightarrow{BC} = \begin{pmatrix} -a \\ -b \end{pmatrix} \text{ where } a > 0 \text{ and } b > 0$ $\bullet \text{ the gradient of } BC \text{ is } 1$	[4]
	• $ \overrightarrow{BC} = \sqrt{8}$. Find the coordinates of D .	
	(,) [Total	

OABC is a parallelogram.

$$\overrightarrow{OA} = \mathbf{p}$$
 and $\overrightarrow{OC} = \mathbf{q}$.
E is the point on *AB* such that $AE : EB = 3 : 1$.

Find \overrightarrow{OE} , in terms of **p** and **q**, in its simplest form.

$$\overrightarrow{OE} =$$
 [2] [Total: 2]

$$\overrightarrow{VW} = \begin{pmatrix} 10 \\ -24 \end{pmatrix}$$

Find $|\overrightarrow{VW}|$.

[2]

[Total: 2]

14
$$\mathbf{a} = \begin{pmatrix} -3 \\ 5 \end{pmatrix}$$
 $\mathbf{b} = \begin{pmatrix} 7 \\ -4 \end{pmatrix}$

Work out.

(a) 4a

 $\left(\quad \right) \quad _{[1]}$

(b) 2a - b

 $\left(\quad \right) \quad _{[2]}$

[Total: 3]

15 (a) Write down the coordinates of point P.

(b) On the grid, plot point Q at (-4, 2). [1]

(c)
$$\overrightarrow{PR} = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$$

On the grid, plot point R. [1]

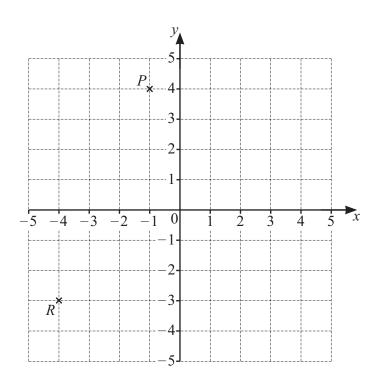
(d) On the grid, draw the line y = 3. [1]

[Total: 4]

$$\mathbf{p} = \begin{pmatrix} 2 \\ 8 \end{pmatrix} \qquad \mathbf{q} = \begin{pmatrix} -1 \\ 4 \end{pmatrix}$$

Find

(a) p-q,


 $\begin{pmatrix} & \end{pmatrix} & \begin{bmatrix} 1 \end{bmatrix}$

(b) 6**p**.

 $\left(\quad \right) \quad _{[1]}$

[Total: 2]

17 The grid shows point P and point R.

(a) Write down the coordinates of point P.

(...... ,) [1]

$$\overrightarrow{PQ} = \begin{pmatrix} 3 \\ -2 \end{pmatrix}$$

Mark point Q on the grid. [1]

(c) Find \overrightarrow{QR} .

$$\overrightarrow{QR} = \begin{pmatrix} & \\ & \end{pmatrix}$$
 [1]

(d) Complete this statement.

 $\overrightarrow{PQ} + \overrightarrow{QR} = \cdots$

[1]

[Total: 4]

18 Work out.

 $3\begin{pmatrix} -4\\7\end{pmatrix}$

 $\left(\begin{array}{c} \\ \end{array}\right)$

[Total: 1]

19 Work out.

 $\left(\begin{array}{c}6\\-5\end{array}\right)+\left(\begin{array}{c}8\\-1\end{array}\right)$

 $\left(\begin{array}{c} \\ \end{array}\right)$

[Total: 1]

 $\mathbf{20} \qquad \mathbf{a} = \begin{pmatrix} 5 \\ -7 \end{pmatrix} \qquad \mathbf{b} = \begin{pmatrix} -2 \\ 6 \end{pmatrix}$

Work out $\mathbf{a} - \mathbf{b}$.

[1]

[Total: 1]

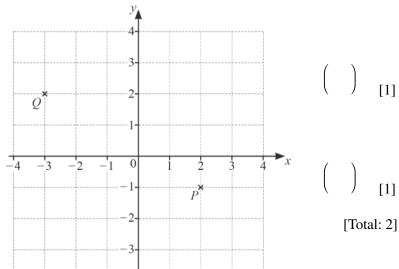
21 Point *L* has coordinates (-3, 6) and $\overrightarrow{LM} = \begin{pmatrix} 5 \\ -2 \end{pmatrix}$.

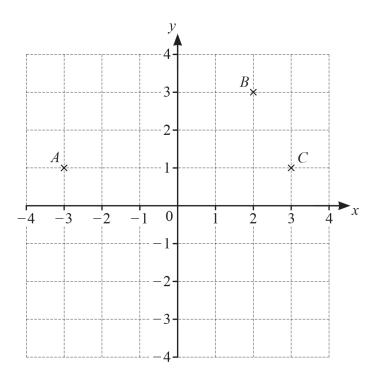
Find the coordinates of point M.

(.....) [1]

[Total: 1]

- 22 Work out.
 - (a) $2\begin{pmatrix} -3\\7 \end{pmatrix}$


 $\left(\quad \right) \quad _{[1]}$


(b) $\begin{pmatrix} 8 \\ -6 \end{pmatrix} + \begin{pmatrix} -5 \\ 2 \end{pmatrix}$

()

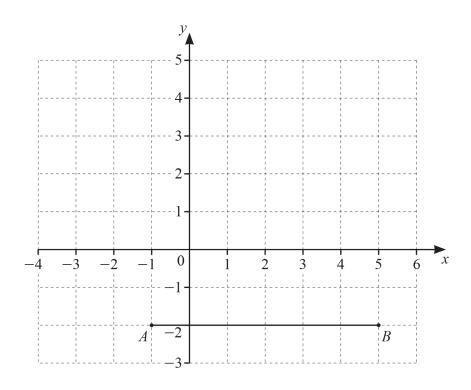
[Total: 2]

- 23 (a) Write \overrightarrow{PQ} as a column vector.
 - **(b)** Write $3\overrightarrow{PQ}$ as a single vector.

Points A, B and C are shown on the grid.

(a) Write down the coordinates of point C.

(,)	[1]
---	---	--	---	-----


(b) On the grid, plot point *D* so that *ABCD* is a parallelogram.

(c) On the grid, plot point
$$E$$
 so that $\overrightarrow{EA} = \begin{pmatrix} -4 \\ 3 \end{pmatrix}$. [2]

[Total: 4]

[1]

25 The diagram shows a line AB on a 1 cm² grid.

(a) Write down the coordinates of point A.

	/	\ [1]
- 1	1	1 1 1
١,	\ 	/ 11

(b) Write down the vector \overrightarrow{AB} .

(c)
$$\overrightarrow{BC} = \begin{pmatrix} -2 \\ 5 \end{pmatrix}$$

Mark point *C* on the grid. [1]

(d) (i) Work out $\overrightarrow{AB} + \overrightarrow{BC}$.

 $\left(\quad \right) \quad _{[1]}$

(ii) Complete this statement.

$$\overrightarrow{AB} + \overrightarrow{BC} = \cdots$$

[1]

(e) A, B and C are three vertices of a parallelogram, ABCD.

(i)	Mark point D on the diagram and draw the parallelogram $ABCD$.	[1]
(ii)	Work out the area of the parallelogram. Give the units of your answer.	
		. [2]
	[To	tal: 8]