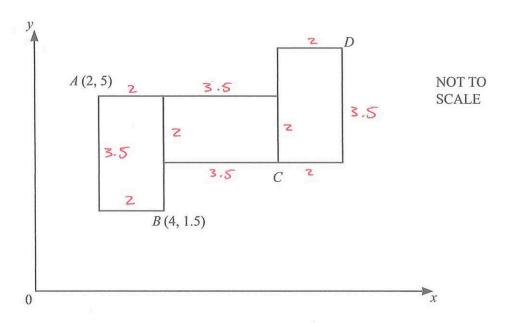

1	Write	down a	factor	of 28	that	is a	nrime	number.
A	AATITO	downa	lactor	01 20	mai	15 0	princ	number.



3 Calculate $\frac{20.24 - \sqrt[3]{30}}{6.5}$.

Give your answer correct to 1 decimal place.

A pattern is formed by 3 congruent rectangles. Each rectangle is a rotation of 90° around one vertex of the rectangle next to it.

The point A has coordinates (2,5).

The point *B* has coordinates (4, 1.5).

Work out the coordinates of point C and point D.

Each week Nisha is paid \$12 per hour for the first 40 hours that she works. She is paid 30% more per hour for any extra hours that she works. One week Nisha works for 45.5 hours.

Calculate how much she is paid that week.

$$40 \times 12 = 480$$

 $5.5 \times 12 \times 1.3 = 85.8$

- 6 Navin and Esther share some money in the ratio Navin: Esther = 5:7.
 - (a) Find Navin's share as a percentage of the total money.

5 41.7 %[1]

(b) Find Esther's share as a percentage of Navin's share.

140' %[1]

(c) Navin's share is \$160.

Work out Esther's share.

$$\frac{160}{5}$$
 x 7

\$ 224 [2]

7 Simplify.

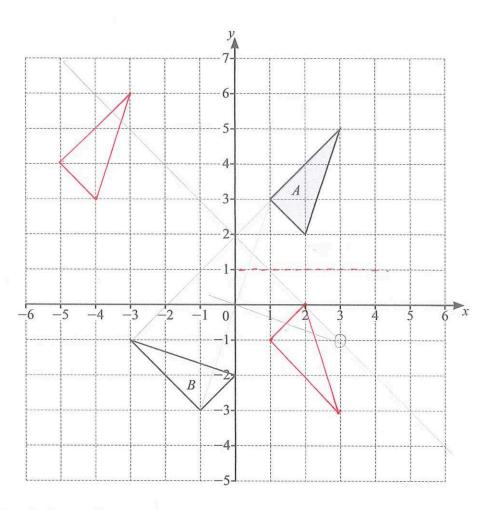
$$\frac{5p^2 - 20p}{2p^2 - 32}$$

$$\frac{5p(p-4)}{2(p^2-16)}$$

5 P 2(P+4) [3] 8 (a) Talia invests \$1500 in a savings account for 4 years. The account pays simple interest at a rate of $2\frac{1}{6}\%$ per year.

Calculate the total interest she receives at the end of 4 years.

$$\left(1500 \times \frac{2\frac{1}{6}}{100}\right) \times 4 = 130$$


(b) Kylian invests \$1500 in a different savings account. The account pays compound interest at a rate of r% per year.

At the end of 5 years, the value of the investment is \$1825.

Calculate the value of r.

$$r = 0.04$$

$$r = \frac{4 \%}{}$$
 [3]

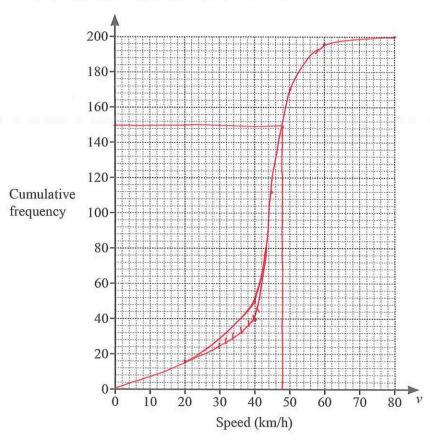
- (a) Draw the image of
 - (i) triangle A after a reflection in the line y = 1
 - (ii) triangle A after a translation by the vector $\begin{pmatrix} -6\\1 \end{pmatrix}$. [2]
- (b) Describe fully the single transformation that maps triangle A onto triangle B.

10 The speed of each of 200 cars passing a building is measured. The table shows the results.

	10	30	42.5	47.5	55	70
Speed (vkm/h)	$0 < v \leqslant 20$	20 < v ≤ 40	$40 < v \leqslant 45$	$45 < v \leqslant 50$	50 < v ≤ 60	60 < v ≤ 80
Frequency	16	34	62	58	26	4

(a) Calculate an estimate of the mean.

$$10 \times 16 = 160$$
 $30 \times 34 = 1020$
 $42.5 \times 62 = 2635$
 $47.5 \times 58 = 2755$
 $55 \times 26 = 1430$
 $70 \times 4 = 280$


41.4 km/h [4]

(b) (i) Use the frequency table to complete the cumulative frequency table.

Speed (vkm/h)	v ≤ 20	v ≤ 40	v ≤ 45	v ≤ 50	v ≤ 60	v ≤ 80
Cumulative frequency	16	50	112	170	196	200

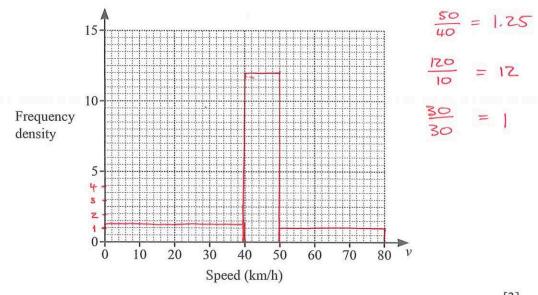
[1]

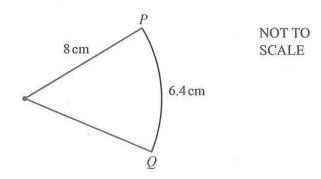
(ii) On the grid, draw a cumulative frequency diagram.

(iii) Use your diagram to find an estimate of the upper quartile.

$$\frac{3}{4}$$
 x 200 = 48 km/h [1]

(c) Two of the 200 cars are chosen at random.


Find the probability that they both have a speed greater than 50 km/h.


$$\frac{30}{200} \times \frac{29}{199} = 2.2\%$$

(d) A new frequency table is made by combining intervals.

Speed (vkm/h)	$0 < v \leqslant 40$	40 < v ≤ 50	50 < v ≤ 80
Frequency	50	120	30

On the grid, draw a histogram to show the information in this table.

The diagram shows a sector of a circle of radius 8 cm. The length of the arc PQ is 6.4 cm.

Find the area of the sector.

$$\frac{x}{360} \times z \text{ Tr} = 6.4$$

$$\frac{x}{360} \times z \text{ Tr} = 6.4$$

$$\frac{x \times z \text{ Tr}(8)}{360} = 6.4$$

$$x \times 16 \text{ T} = 6.4 \times 360$$

$$x = \frac{6.4 \times 360}{16 \text{ Tr}}$$

$$x = 45.8366236 | \dots$$

12 The table shows the first 5 terms of sequences A, B and C.

	1st term	2nd term	3rd term	4th term	5th term	<i>n</i> th term
Sequence A	5	12	31	68	129	$n^3 + 4$
Sequence B	10/3	9/4	8/5	$\frac{7}{6}$	<u>6</u> 7	-n+11 n+2
Sequence C	4	8	16	32	64	4(z) ⁿ⁻¹

Complete the table to show the nth term of each sequence.

$$6 \div 6 = 1$$
 n^3 1×27 $5 \times 12 \times 31$ $+4 + 4 + 4$

$$qr^{n-1}$$
 $z^2 \cdot z^{n-1}$
 $q = 4$
 $r = \frac{8}{4} = 2$
 $\frac{16}{8} = 2$
 $\frac{32}{16} = 2$

f(x) = 5 - 4x

(a) Find
$$f(-3)$$
. $5-4(-3)$
= $5+12$

.....[1]

[6]

(b) Find f(3-2x). Give your answer in its simplest form.

$$5-4(3-2x)$$

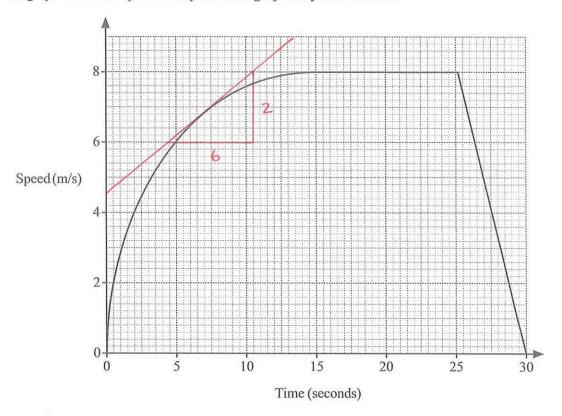
= $5-12+8x$
= $8x-7$

8x - 7 [2]

(c) Find $f^{-1}(x)$.

$$y = 5-4x$$

$$x = 5-4y$$


$$y = 5-x$$

$$y = 5-x$$

$$y = 5-x$$

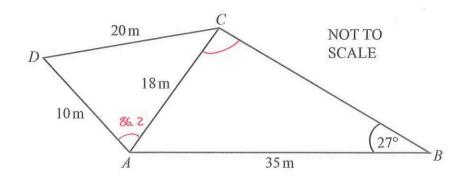
$$f^{-1}(x) = \frac{5-x}{4}$$
 [2]

14 The graph shows the speed of a cyclist during a journey of 30 seconds.

(a) Write down the acceleration of the cyclist between 15 seconds and 25 seconds.

(b) By drawing a tangent, find an estimate for the acceleration of the cyclist at 7.5 seconds.

$$\frac{Z}{6} = \frac{1}{3} \frac{\text{m/s}}{\text{s}}$$


(c) Work out the average speed of the cyclist between 15 seconds and 30 seconds.

$$speed = \frac{distance}{time}$$

$$= \frac{(8 \times 10) + \frac{1}{2}(8 \times 5)}{15}$$

$$= \frac{100}{15}$$

$$= 6.6$$
6.67
m/s [3]

The diagram shows the positions A, B, C and D on a football pitch.

(a) Show that angle $CAD = 86.2^{\circ}$, correct to 1 decimal place.

[4]

(b) Calculate the **obtuse** angle ACB.

$$\frac{\sin A\hat{C}B}{35} = \frac{\sin 27}{18}$$

$$\sin A\hat{C}B = 0.88275...$$

$$A\hat{C}B = 61.977$$

$$\sin 6 = \sin(180 - 8)$$

$$\sin 61.977 = 118$$
[4]

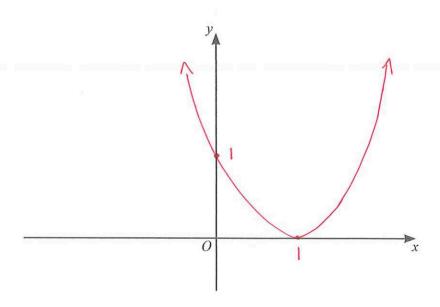
- 16 f is inversely proportional to the cube of g. When f = 0.5, g = 3.
 - (a) Find f in terms of g.

$$f \propto \frac{1}{9^3} \qquad K = 13.5$$

$$f = \frac{k}{9^3}$$

$$0.5 = \frac{k}{3^3}$$

$$f = \frac{13.5}{3}$$
 [2]


(b) g is increased by 100%.

Find the percentage change in f.

$$\frac{13.5}{6^3} = 0.0625$$

$$\frac{13.5}{6^3} = 0.0625 \qquad \frac{0.5 - 0.0625}{0.5} \times 100$$

17

- (a) On the diagram,
 - (i) sketch the graph of $y = (x-1)^2$

[2]

18 A piece of metal has volume 1240 cm³, correct to the nearest 20 cm³. The mass of the piece of metal is 7800 g, correct to the nearest 100 g.

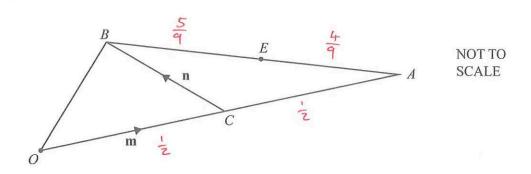
Calculate the lower bound of the density of the metal.

[Density = mass ÷ volume.]

LB

UB

1230
$$\leq$$
 vol \leq 1250


Density = mass

volume

7750 \leq mass \leq 7850

= $\frac{7750}{1250}$

19

OAB is a triangle. C is the midpoint of OA. $\overrightarrow{OC} = \mathbf{m}$ and $\overrightarrow{CB} = \mathbf{n}$. E lies on AB and AE : EB = 4:5.

Find, in terms of \mathbf{m} and \mathbf{n} , the position vector of E. Give your answer in its simplest form.

$$1\frac{5}{9}m + \frac{4}{9}n$$
 [4]

20 The line y = 4x + 12 intersects the curve $y = 2x^2 - x - 3$ at point P and point Q.

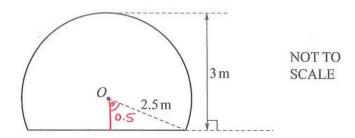
Find the coordinates of P and Q.

You must show all your working and give your answers correct to 2 decimal places.

$$4x + 12 = 2x^{2} - x - 3$$

$$0 = 2x^{2} - 5x - 15$$

$$a = 2 \quad b = -5 \quad c = -15$$


$$x = \frac{-(-5) \pm \sqrt{(-5)^{2} - 4(2)(-15)}}{2(2)}$$

$$= \frac{5 \pm \sqrt{145}}{4}$$

$$x = 4.26 \quad \text{or} \quad -1.76$$

$$4(4.26) + 12 \quad y = 4(-1.76)$$

$$y = 4(4.26) + 12$$
 $y = 4(-1.76) + 12$
= 4.958
= 29.04 ≈ 4.96

The diagram shows the major segment of a circle, centre O, radius 2.5 m.

The segment is the cross section of a tunnel with height 3 m.

The length of the tunnel is 800 m and it has the same cross section throughout its length.

Calculate the volume of the tunnel.

$$Cos \theta = \frac{o.5}{z.5}$$

$$\theta = cos^{-1}(\frac{1}{5})$$

$$= 78.4630... (xz - p 156.926°)$$

$$Tr^{2} - \frac{156.9}{360} \times Mr^{2} + z\left[\frac{1}{2}(6.5)(z.5)\sin(78.46...)\right]$$

$$O - O + D$$

$$M(z.5)^{2} - 8.55899... + 1.224731...$$

$$= \Pi(z.5)^2 - 8.55899... + 1.224731...$$

$$40 \times 800$$

$$= 9840.55606$$

$$\approx 9840 (354)$$